Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy là tam giác cân tại \(A\), mặt bên \(\left( {SBC} \right)\) là tam giác

Câu hỏi số 394740:
Vận dụng

Cho hình chóp \(S.ABC\) có đáy là tam giác cân tại \(A\), mặt bên \(\left( {SBC} \right)\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi \(\left( \alpha  \right)\) là mặt phẳng đi qua điểm \(B\) và vuông góc với \(SC\), chia khối chóp thành hai phần. Tính tỉ số thể tích của hai phần đó.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:394740
Phương pháp giải

- Gọi \(I\) là trung điểm của \(BC\), chứng minh \(SI \bot \left( {ABC} \right)\).

- Kẻ \(IH \bot SC\), chứng minh \(SC \bot \left( {AHI} \right)\).

- Qua \(B\) dựng mặt phẳng song song với \(\left( {AHI} \right)\), chứng minh đó là mặt phẳng qua \(B\) và vuông góc với \(SC\).

- Sử dụng tỉ số thể tích: Cho hình chóp \(S.ABC\), các điểm \(A',\,\,B',\,\,C'\) lần lượt thuộc \(SA,\,\,SB,\,\,SC\), khi đó ta có \(\dfrac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \dfrac{{SA'}}{{SA}}.\dfrac{{SB'}}{{SB}}.\dfrac{{SC'}}{{SC}}\).

Giải chi tiết

Gọi \(I\) là trung điểm của \(BC\), do tam giác \(SBC\) đều nên \(SI \bot BC\).

Ta có: \(\left\{ \begin{array}{l}\left( {SBC} \right) \bot \left( {ABC} \right)\\\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SBC} \right) \supset SI \bot BC\end{array} \right.\) \( \Rightarrow SI \bot \left( {ABC} \right)\).

Vì tam giác \(ABC\) cân tại \(A\) (gt) nên \(AI \bot BC\), lại có \(AI \bot SI\) (do \(SI \bot \left( {ABC} \right)\)) nên suy ra \(AI \bot \left( {SBC} \right)\), do đó \(AI \bot SC\).

Gọi \(K\) là trung điểm của \(SC\), do \(\Delta SBC\) đều nên \(BK \bot SC\), trong \(\left( {SBC} \right)\) kẻ \(IH\parallel BK\,\,\left( {H \in SC} \right)\) \( \Rightarrow IH \bot SC\).

Ta có: \(\left\{ \begin{array}{l}IH \bot SC\\AI \bot SC\end{array} \right. \Rightarrow SC \bot \left( {AHI} \right)\).

Trong \(\left( {SAC} \right)\) kẻ \(KN\parallel AH\,\,\left( {N \in SA} \right)\) ta có: \(\left\{ \begin{array}{l}BK\parallel IH\\KN\parallel AH\end{array} \right. \Rightarrow \left( {BKN} \right)\parallel \left( {AHI} \right)\).

Mà \(SC \bot \left( {AHI} \right) \Rightarrow SC \bot \left( {BKN} \right)\).

Do đó mặt phẳng qua \(B\) và vuông góc với \(SC\) chính là \(\left( {BKN} \right)\). Mặt phẳng \(\left( {BKN} \right)\) chia khối chóp đã cho thành hai phần. Đặt \({V_1} = {V_{S.BKN}}\), \({V_2} = {V_{BKN.ABC}}\).

Áp dụng định lí Ta-lét ta có:

\(\begin{array}{l}\dfrac{{HC}}{{HK}} = \dfrac{{IC}}{{IB}} = 1 \Rightarrow HK = HC = \dfrac{1}{2}CK = \dfrac{1}{2}SK\\ \Rightarrow \dfrac{{SK}}{{SH}} = \dfrac{2}{3} = \dfrac{{SN}}{{SA}}\\ \Rightarrow \dfrac{{{V_{SBKN}}}}{{{V_{SBCA}}}} = \dfrac{{SK}}{{SC}}.\dfrac{{SN}}{{SA}} = \dfrac{1}{2}.\dfrac{2}{3} = \dfrac{1}{3}\\ \Rightarrow {V_1} = {V_{SBKN}} = \dfrac{1}{3}{V_{SBCA}} = \dfrac{1}{3}{V_{S.ABC}}\\ \Rightarrow {V_2} = \dfrac{2}{3}{V_{S.ABC}}\end{array}\)

Vậy \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{1}{3}:\dfrac{2}{3} = \dfrac{1}{2}.\)

Chú ý khi giải

Công thức tỉ số thể tích trên chỉ áp dụng đối với chóp tam giác.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com