Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Cho hình lăng trụ \(ABC.A'B'C'\) có độ dài cạnh bên bằng \(a\), đáy \(ABC\) là tam giác vuông tại

Câu hỏi số 396268:
Vận dụng

Cho hình lăng trụ \(ABC.A'B'C'\) có độ dài cạnh bên bằng \(a\), đáy \(ABC\) là tam giác vuông tại \(B\), \(\angle BCA = {60^0}\), góc giữa \(AA'\) và \(\left( {ABC} \right)\) bằng \({60^0}\). Hình chiếu vuông góc của \(A'\) lên \(\left( {ABC} \right)\) trùng với trọng tâm \(\Delta ABC\). Tính theo \(a\) thể tích của khối lăng trụ \(ABC.A'B'C'\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:396268
Phương pháp giải

Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).

Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.

Giải chi tiết

Gọi G là trọng tâm tam giác ABC. Theo đề bài, ta có : \(A'G \bot \left( {ABC} \right)\).

\( \Rightarrow \angle \left( {AA';\left( {ABC} \right)} \right) = \angle GAA' = {60^0}\)

\( \Rightarrow \left\{ \begin{array}{l}AG = AA'.{\rm{cos6}}{{\rm{0}}^0} = \dfrac{a}{2} \Rightarrow AN = \dfrac{3}{2}.\dfrac{a}{2} = \dfrac{{3{\rm{a}}}}{4}\\A'G = AA'.{\rm{sin6}}{{\rm{0}}^0} = \dfrac{{a\sqrt 3 }}{2}\end{array} \right.\)

Giả sử độ dài đoạn \(BC = x\) \( \Rightarrow BN = \dfrac{x}{2},\,AB = BC.\tan \angle C = \tan {60^0}.x = x\sqrt 3 \)

\( \Rightarrow AN = \sqrt {{{\left( {\dfrac{x}{2}} \right)}^2} + {{\left( {x\sqrt 3 } \right)}^2}}  = \dfrac{{x\sqrt {13} }}{2}\)

\(\begin{array}{l} \Rightarrow \dfrac{{x\sqrt {13} }}{2} = \dfrac{{3{\rm{a}}}}{4} \Rightarrow x = \dfrac{{3a}}{{2\sqrt {13} }} = \dfrac{{3\sqrt {13} }}{{26}}\\ \Rightarrow BC = \dfrac{{3a\sqrt {13} }}{{26}},\,\,AB = \dfrac{{3a\sqrt {13} }}{{26}}.\sqrt 3  = \dfrac{{3a\sqrt {39} }}{{26}}\\ \Rightarrow {S_{ABC}} = \dfrac{1}{2}.AB.BC = \dfrac{1}{2}.\dfrac{{3a\sqrt {13} }}{{26}}.\dfrac{{3a\sqrt {39} }}{{26}} = \dfrac{{9{a^2}\sqrt 3 }}{{104}}\end{array}\)

Thể tích của khối lăng trụ ABC.A’B’C’ là: \(V = {S_{ABC}}.A'G = \dfrac{{9{a^2}\sqrt 3 }}{{104}}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{27{a^3}}}{{208}}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com