Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu giá trị nguyên dương của \(m\) để bất phương trình \(\left[ {\left( {m - 1} \right){4^x}

Câu hỏi số 396275:
Vận dụng

Có bao nhiêu giá trị nguyên dương của \(m\) để bất phương trình \(\left[ {\left( {m - 1} \right){4^x} - \dfrac{2}{{{4^x}}} + 2m + 1} \right]\left( {x - {4^{1 - x}}} \right) \ge 0\) nghiệm đúng với mọi \(x\) thuộc \(\left[ {0;1} \right)\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:396275
Phương pháp giải

Đánh giá được biểu thức ở ngoặc thứ hai luôn âm với mọi x thuộc \(\left[ {0;1} \right)\).

Từ đó, chuyển sang đánh giá dấu của biểu thức ở ngoặc thứ hai. Độc lập m, sử dụng khảo sát hàm số để đánh giá.

Giải chi tiết

Xét \(f\left( x \right) = x - {4^{1 - x}}\) trên \(\left[ {0;1} \right)\), có \(f'\left( x \right) = 1 + {4^{1 - x}}\ln 4 > 0,\,\forall x \in \)\(\left[ {0;1} \right) \Rightarrow \) Hàm số \(f\left( x \right)\) đồng biến trên \(\left[ {0;1} \right)\)

Mà \(f\left( 0 \right) =  - 4,\,f\left( 1 \right) = 0 \Rightarrow \) Tập giá trị của \(f\left( x \right)\) trên \(\left[ {0;1} \right)\) là: \(\left[ { - 4;0} \right) \Rightarrow \)\(x - {4^{1 - x}} < 0,\)\(\forall x \in \)\(\left[ {0;1} \right)\)

Khi đó, bất phương trình

\(\left[ {\left( {m - 1} \right){4^x} - \dfrac{2}{{{4^x}}} + 2m + 1} \right]\left( {x - {4^{1 - x}}} \right) \ge 0\)

\( \Leftrightarrow \left( {m - 1} \right){4^x} - \dfrac{2}{{{4^x}}} + 2m + 1 \le 0\) 

\( \Leftrightarrow m\left( {{4^x} + 2} \right) \le {4^x} + \dfrac{2}{{{4^x}}} - 1 \Leftrightarrow m \le \dfrac{{{4^{2x}} - {4^x} + 2}}{{{4^{2x}} + {{2.4}^x}}}\)

Với \(x \in \)\(\left[ {0;1} \right)\) thì \({4^x} \in \left[ {1;4} \right)\). Xét hàm số \(g\left( t \right) = \dfrac{{{t^2} - t + 2}}{{{t^2} + 2t}},\,t \in \left[ {1;4} \right)\), có

\(g'\left( t \right) = \dfrac{{\left( {2t - 1} \right)\left( {{t^2} + 2t} \right) - \left( {2t + 2} \right)\left( {{t^2} - t + 2} \right)}}{{{{\left( {{t^2} + 2t} \right)}^2}}} = \dfrac{{3{t^2} - 4t - 4}}{{{{\left( {{t^2} + 2t} \right)}^2}}}\),  \(g'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2\\t =  - \dfrac{2}{3}\end{array} \right.\)

Hàm số \(g\left( t \right)\) liên tục trên \(\left[ {1;4} \right)\), có \(g\left( 1 \right) = \dfrac{2}{3},\,g\left( 2 \right) = \dfrac{1}{2},\,\mathop {\lim }\limits_{t \to  + \infty } g\left( t \right) = 1\)

\( \Rightarrow \) Tập giá trị của hàm số \(g\left( t \right)\) trên \(\left[ {1;4} \right)\) là: \(\left[ {\dfrac{1}{2};1} \right)\)

Vậy, để bất phương trình đã cho đúng với mọi x thuộc \(\left[ {0;1} \right)\) thì \(m \le \dfrac{1}{2}\).

m là số nguyên dương, nên không tồn tại giá trị của m thỏa mãn.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com