Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho một tứ diện đều \(S.ABC\) có chiều cao h. Ở ba góc của tứ diện, người ta cắt đi các

Câu hỏi số 396627:
Vận dụng

Cho một tứ diện đều \(S.ABC\) có chiều cao h. Ở ba góc của tứ diện, người ta cắt đi các tứ diện đều có chiều cao x để khối đa diện còn lại có thể tích bằng một nửa thể tích khối tứ diện đều ban đầu. Tìm x.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:396627
Phương pháp giải

Chiều cao của khối tứ diện đều cạnh a là: \(h = \dfrac{{a\sqrt 6 }}{3}\)

Thể tích của khối tứ diện đều cạnh a là: \(V = \dfrac{{{a^3}\sqrt 2 }}{{12}}\)

Giải chi tiết

Tứ diện đều .. có chiều cao h \( \Rightarrow \) Độ dài cạnh của tứ diện \(S.ABC\) là: \(\dfrac{{3h}}{{\sqrt 6 }} = \dfrac{{h\sqrt 6 }}{2}\)

\( \Rightarrow \) Thể tích của khối tứ diện \(S.ABC\) là: \({V_{S.ABC}} = \dfrac{{{{\left( {\dfrac{{h\sqrt 6 }}{2}} \right)}^3}\sqrt 2 }}{{12}} = \dfrac{{{h^3}.6\sqrt 6 .\sqrt 2 }}{{8.12}} = \dfrac{{{h^3}\sqrt 3 }}{8}\)

Tổng thể tích của ba khối tứ diện đều bị cắt đi là: \({V_0} = 3.\dfrac{{{x^3}\sqrt 3 }}{8}\)

Vì thể tích phần còn lại bằng một nửa thể tích khối tứ diện đều ban đầu nên, ta có: \(\dfrac{{3{x^3}\sqrt 3 }}{8} = \dfrac{1}{2}.\dfrac{{{h^3}\sqrt 3 }}{8} \Leftrightarrow 6{x^3} = {h^3} \Leftrightarrow x = \dfrac{h}{{\sqrt[3]{6}}}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com