Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong kỳ thi Tuyển sinh vào lớp 10 THPT năm 2019, tổng chi tiêu tuyển sinh của Trường THPT A và

Câu hỏi số 396879:
Vận dụng

Trong kỳ thi Tuyển sinh vào lớp 10 THPT năm 2019, tổng chi tiêu tuyển sinh của Trường THPT A và Trường THPT B là 900 học sinh. Do cả hai trường đều có chất lượng giáo dục rất tốt nên sau khi hết thời gian điều chỉnh nguyện vọng thì số lượng thí sinh đăng ký dự tuyển vào trường THPT A và THPT B tăng lần lượt là 15% và 10% so với chỉ tiêu ban đầu. Vì vậy, tổng số thí sinh đăng ký dự tuyển của cả hai trường là 1010. Hỏi số lượng thí sinh đăng ký dự tuyển của mỗi trường đăng là bao nhiêu?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:396879
Phương pháp giải

Gọi số lượng thí sinh  đăng ký dự tuyển theo chỉ tiêu của trường THPT A là \(x\) (học sinh)  \(\left( {x \in {\mathbb{N}^*},x < 900} \right).\)

Số lượng thí sinh  đăng ký dự tuyển theo chỉ tiêu của trường  THPT B là \(y\) (học sinh)  \(\left( {y \in {\mathbb{N}^*},y < 900} \right).\)

Biểu diễn các đại lượng chưa biết theo các ẩn đã gọi và các đại lượng đã biết.

Lập hệ phương trình, giải hệ phương trình tìm ẩn đã gọi.

Đối chiếu với điều kiện rồi kết luận.

Giải chi tiết

Gọi số lượng thí sinh  đăng ký dự tuyển theo chỉ tiêu của trường THPT A là \(x\) (học sinh)  \(\left( {x \in {\mathbb{N}^*},x < 900} \right).\)

Số lượng thí sinh  đăng ký dự tuyển theo chỉ tiêu của trường  THPT B là \(y\) (học sinh)  \(\left( {y \in {\mathbb{N}^*},y < 900} \right).\)

Do tổng chi tiêu tuyển sinh của trường THPT A và THPT B là 900 học sinh nên ta có phương trình:

\(x + y = 900\) (1)

Sau khi hết thời gian điều chỉnh nguyện vọng thì số lượng thí sinh đăng ký dự tuyển vào trường THPT A là: \(115\% x\) (học sinh).

Sau khi hết thời gian điều chỉnh nguyện vọng thì số lượng thí sinh đăng ký dự tuyển vào trường THPT B là: \(110\% x\) (học sinh).

Khi đó tổng số học sinh đăng ký dự tuyển cả hai trường là 1010 học sinh nên ta có phương trình:

\(115\% x + 110\% y = 1010\) (2)

Từ (1) và (2) ta có hệ phương trình:

\(\begin{array}{l}\,\,\,\,\,\,\left\{ \begin{array}{l}x + y = 900\\\frac{{115}}{{100}}x + \frac{{110}}{{100}}y = 1010\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = 900\\115x + 110y = 101000\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}110x + 110y = 99000\\115x + 110y = 101000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x = 2000\\x + y = 900\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 400\,\,\,\left( {tm} \right)\\y = 500\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Vậy số lượng học sinh đăng ký dự tuyển vào trường  THPT A là \(115\% .400 = 460\)  học sinh; trường THPT B là \(1010 - 460 = 550\) học sinh.

Đáp án cần chọn là: B

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com