Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một mảnh đất hình chữ nhật có diện tích \(360{m^2}.\) Nếu tăng chiều rộng \(2m\) và giảm

Câu hỏi số 396885:
Thông hiểu

Một mảnh đất hình chữ nhật có diện tích \(360{m^2}.\) Nếu tăng chiều rộng \(2m\) và giảm chiều dài \(6m\) thì diện tích mảnh đất không đổi. Tính chu vi của mảnh đất lúc đầu.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:396885
Phương pháp giải

Gọi chiều rộng của mảnh đất đã cho là \(x\;\left( m \right),\;\;\left( {0 < x < 360} \right).\)

Gọi chiều dài của mảnh đất đã cho là:  \(y\;\left( m \right),\;\;\left( {6 < y < 360,\;y > x} \right).\)

Dựa vào các giả thiết của bài toán lập hệ phương trình, giải hệ phương trình tìm ẩn, đối chiếu với điều kiện rồi kết luận.

Giải chi tiết

Gọi chiều rộng của mảnh đất đã cho là \(x\;\left( m \right),\;\;\left( {0 < x < 360} \right).\)

Gọi chiều dài của mảnh đất đã cho là:  \(y\;\left( m \right),\;\;\left( {6 < y < 360,\;y > x} \right).\)

Khi đó ta có diện tích của mảnh đất là: \(xy = 360\;\;\;\left( 1 \right).\)

Tăng chiều rộng thêm \(2m\) thì chiều rộng mới là: \(x + 2\;\;\left( m \right).\)

Giảm chiều dài đi \(6m\) thì chiều dài mới là: \(y - 6\;\;\left( m \right).\)

Khi đó diện tích mảnh đất không đổi nên ta có phương trình: \(\left( {x + 2} \right)\left( {y - 6} \right) = xy \Leftrightarrow 2y - 6x - 12 = 0\;\;\;\;\left( 2 \right).\)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}xy = 360\\2y - 6x - 12 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}xy = 360\\y = 3x + 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x\left( {3x + 6} \right) = 360\\y = 3x + 6\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}3{x^2} + 6x - 360 = 0\\y = 3x + 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x = 10\;\;\;\;\left( {tm} \right)\\x =  - 12\;\;\left( {ktm} \right)\end{array} \right.\\y = 3.10 + 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 10\\y = 36\;\;\left( {tm} \right)\end{array} \right..\)

Vậy chu vi của mảnh vườn lúc đầu là: \(\left( {10 + 36} \right).2 = 92m.\)

Đáp án cần chọn là: C

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com