Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho khối chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), tam giác ABC vuông tại C, \(AC = 2a,\)\(BC = a,\)\(SB = 3a\). Tính thể tích của khối chóp \(S.ABC.\)

Câu 396905: Cho khối chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), tam giác ABC vuông tại C, \(AC = 2a,\)\(BC = a,\)\(SB = 3a\). Tính thể tích của khối chóp \(S.ABC.\)

A.

\(\dfrac{{2{a^3}}}{3}\)

 

B.

\(\dfrac{{{a^3}}}{3}\)

 

C.

\({a^3}\)

 

D. \(\dfrac{{{a^3}}}{2}\)

Câu hỏi : 396905

Phương pháp giải:

- Áp dụng định lí Pytago tính chiều cao \(SA\) của khối chóp.


- Tính diện tích đáy, sử dụng công thức tính diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông.


- Sử dụng công thức tính thể tích khối chóp \({V_{S.ABC}} = \dfrac{1}{3}SA.{S_{\Delta ABC}}\).

  • Đáp án : A
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot AB\), suy ra \(\Delta SAB\) vuông tại \(A\).

    Áp dụng định lí Pytago trong các tam giác vuông ta có:

    \(\begin{array}{l}AB = \sqrt {A{C^2} + B{C^2}}  = \sqrt {4{a^2} + {a^2}}  = a\sqrt 5 \\SA = \sqrt {S{B^2} - A{B^2}}  = \sqrt {9{a^2} - 5{a^2}}  = 2a\end{array}\)

    Vì \(\Delta ABC\) vuông tại \(C\) nên \({S_{\Delta ABC}} = \dfrac{1}{2}AC.BC = \dfrac{1}{2}.2a.a = {a^2}\).

    Vậy  \({V_{S.ABC}} = \dfrac{1}{3}.SA.{S_{\Delta ABC}} = \dfrac{1}{3}.2a.{a^2} = \dfrac{{2{a^3}}}{3}.\)

    Chọn A.

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com