Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\). Gọi \(M\) là giá trị lớn

Câu hỏi số 396936:
Vận dụng

Cho hàm số \(f\left( x \right) = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\). Gọi \(M\) là giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 1;3} \right]\). Tổng các giá trị của tham số thực \(m\) để \(M = \dfrac{{71}}{2}.\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:396936
Phương pháp giải

- Đặt \(h\left( x \right) = 3{x^4} - 4{x^3} - 12{x^2} + m\), khảo sát và lập BBT của hàm số \(h\left( x \right)\) trên \(\left[ { - 1;3} \right]\).

- Chia các trường hợp, từ đó suy ra đồ thị hàm số \(y = \left| {h\left( x \right)} \right|\) và tìm GTLN của hàm số trên \(\left[ { - 1;3} \right]\).

- Tìm các giá trị của \(m\) thỏa mãn từng trường hợp.

Giải chi tiết

Đặt \(h\left( x \right) = 3{x^4} - 4{x^3} - 12{x^2} + m\) ta có:

\(h'\left( x \right) = 12{x^3} - 12{x^2} - 24x = 0 \Rightarrow \left[ \begin{array}{l}x = 0\\x =  - 1\\x = 2\end{array} \right.\)

Bảng biến thiên:

Ta thấy \(m - 32 < m - 5 < m < m + 27\).

TH1: \(m - 32 \ge 0 \Leftrightarrow m \ge 32\).

\( \Rightarrow M = m + 27 = \dfrac{{71}}{2} \Leftrightarrow m = \dfrac{{17}}{2}\,\,\left( {ktm} \right)\).

TH2: \(m - 32 < 0 \le m - 5 \Leftrightarrow 5 \le m < 32\).

\( \Rightarrow M \in \left\{ {32 - m;m + 27} \right\}\).

Nếu \(m + 27 \ge 32 - m \Leftrightarrow 2m \ge 5 \Leftrightarrow m \ge \dfrac{5}{2}\), kết hợp điều kiện \( \Rightarrow 5 \le m < 32\), khi đó \(M = m + 27 = \dfrac{{71}}{2} \Leftrightarrow m = \dfrac{{17}}{2}\,\,\,\left( {tm} \right)\).

Nếu \(m + 27 < 32 - m \Leftrightarrow m < \dfrac{5}{2}\), kết hợp điều kiện \( \Rightarrow m \in \emptyset \).

TH3: \(m - 5 < 0 \le m \Leftrightarrow 0 \le m < 5\).

 \( \Rightarrow M \in \left\{ {32 - m;m + 27} \right\}\).

Nếu \(m + 27 \ge 32 - m \Leftrightarrow 2m \ge 5 \Leftrightarrow m \ge \dfrac{5}{2}\), kết hợp điều kiện \( \Rightarrow \dfrac{5}{2} \le m < 5\), khi đó \(M = m + 27 = \dfrac{{71}}{2} \Leftrightarrow m = \dfrac{{17}}{2}\,\,\,\left( {ktm} \right)\).

Nếu \(m + 27 < 32 - m \Leftrightarrow m < \dfrac{5}{2}\), kết hợp điều kiện \( \Rightarrow 0 \le m < \dfrac{5}{2}\), khi đó \(M = 32 - m = \dfrac{{71}}{2} \Leftrightarrow m =  - \dfrac{7}{2}\,\,\left( {ktm} \right)\).

TH4: \(m + 27 \le 0 \Leftrightarrow m \le  - 27\), khi đó \(M = 32 - m = \dfrac{{71}}{2} \Leftrightarrow m =  - \dfrac{7}{2}\,\,\,\left( {tm} \right)\).

Vậy có hai giá trị của \(m\) thỏa mãn yêu cầu bài toán là \(m \in \left\{ {\dfrac{{17}}{2}; - \dfrac{7}{2}} \right\}\), tổng các giá trị của \(m\) là \(\dfrac{{17}}{2} + \left( { - \dfrac{7}{2}} \right) = \dfrac{{10}}{2} = 5\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com