Cho hai đường tròn \(\left( {{C_1}} \right):\,\,{x^2} + {y^2} - 10x = 0\) và \(\left( {{C_2}} \right):\,\,{x^2} +
Cho hai đường tròn \(\left( {{C_1}} \right):\,\,{x^2} + {y^2} - 10x = 0\) và \(\left( {{C_2}} \right):\,\,{x^2} + {y^2} + 4x - 2y - 20 = 0.\) Viết phương trình tiếp tuyến chung của hai đường tròn \(\left( {{C_1}} \right),\,\,\left( {{C_2}} \right).\)
Đáp án đúng là: C
Quảng cáo
Đường tròn \(\left( {{C_1}} \right)\) có tâm \({I_1}\left( {5;\,\,0} \right)\) và bán kính \({R_1} = 5.\)
Đường tròn \(\left( {{C_2}} \right)\) có tâm \({I_2}\left( { - 2;\,\,1} \right)\) và bán kính \({R_2} = \sqrt {{2^2} + 1 + 20} = 5.\)
\( \Rightarrow {I_1}{I_2} = \sqrt {{{\left( { - 2 - 5} \right)}^2} + 1} = 5\sqrt 2 < {R_1} + {R_2} = 10\)
\( \Rightarrow \) Hai đường tròn đã cho cắt nhau \( \Rightarrow \) hai đường tròn có 2 đường tiếp tuyến chung.
Gọi \(\Delta :\,\,ax + by + c = 0\,\,\,\left( {{a^2} + {b^2} \ne 0} \right)\) là tiếp tuyến chung của hai đường tròn \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right).\)
Khi đó ta có: \(\left\{ \begin{array}{l}d\left( {{I_1};\,\,\Delta } \right) = {R_1}\\d\left( {{I_2};\,\,\Delta } \right) = {R_2}\end{array} \right..\)
Đáp án cần chọn là: C
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












