Cho đường tròn \(\left( C \right):\,\,\,{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\) và
Cho đường tròn \(\left( C \right):\,\,\,{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\) và đường thẳng \(d:\,\,3x - 4y + m = 0.\) Tìm \(m\) để trên \(d\) có duy nhất một điểm \(P\) mà từ \(P\) có thể kẻ được hai tiếp tuyến \(PA,\,\,PB\) với \(A,\,\,B\) là các tiếp điểm sao cho \(\Delta PAB\) là tam giác đều.
Đáp án đúng là: D
Quảng cáo
Đường tròn \(\left( C \right):\,\,\,{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\) có tâm \(I\left( {1;\, - 2} \right)\) và bán kính \(R = 3.\)
\(\Delta PAB\) là tam giác đều \( \Leftrightarrow PA = 2AI = 6.\)
\( \Rightarrow P \in \left( {C'} \right)\) với \(\left( {C'} \right)\) là đường tròn tâm \(I\left( {1; - 2} \right)\) và có bán kính \(R' = 6cm.\)
\( \Rightarrow \) \(P\) là giao điểm của \(d:\,\,\,3x - 4y + m = 0\) và \(\left( {C'} \right).\)
Mà có duy nhất một điểm \(P\) mà từ \(P\) có thể kẻ được hai tiếp tuyến \(PA,\,\,PB\) với \(A,\,\,B\) là các tiếp điểm sao cho \(\Delta PAB\) là tam giác đều.
\( \Rightarrow d\) tiếp xúc với \(\left( {C'} \right)\) hay \(d'\) là tiếp tuyến của \(\left( {C'} \right)\) tại \(P.\)
\( \Rightarrow d\left( {I;\,\,d} \right) = 6.\)
Đáp án cần chọn là: D
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












