Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(M\left( { - 3;\,2;\,4} \right)\). Gọi

Câu hỏi số 399165:
Thông hiểu

Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(M\left( { - 3;\,2;\,4} \right)\). Gọi \(A,\,\,B,\,\,C\) là hình chiếu của \(M\) trên trục \(Ox,\,\,Oy,\,\,Oz\). Trong các mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng \(\left( {ABC} \right)\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:399165
Phương pháp giải

- Tìm tọa độ các điểm \(A,\,\,B,\,\,C\).

   + Hình chiếu của \(M\left( {{x_0};{y_0};{z_0}} \right)\) lên trục \(Ox\) là \(A\left( {{x_0};0;0} \right)\).

   + Hình chiếu của \(M\left( {{x_0};{y_0};{z_0}} \right)\) lên trục \(Oy\) là \(B\left( {0;{y_0};0} \right)\).

   + Hình chiếu của \(M\left( {{x_0};{y_0};{z_0}} \right)\) lên trục \(Oz\) là \(C\left( {0;0;{x_0}} \right)\).

- Viết phương trình mặt phẳng \(\left( {ABC} \right)\) đi qua \(A,\,\,B,\,\,C\) dạng mặt chắn: Mặt phẳng đi qua các điểm \(A\left( {{x_0};0;0} \right)\), \(B\left( {0;{y_0};0} \right)\), \(C\left( {0;0;{x_0}} \right)\) có phương trình \(\dfrac{x}{{{x_0}}} + \dfrac{y}{{{y_0}}} + \dfrac{z}{{{z_0}}} = 1\).

- Tìm mặt phẳng song song với mặt phẳng \(\left( {ABC} \right)\): Hai mặt phẳng song song khi VTPT của chúng là các vectơ cùng phương.

Giải chi tiết

\(M\left( { - 3;\,\,2;\,\,4} \right)\). Theo giả thiết, \(A,\,\,B,\,\,C\) là hình chiếu vuông góc của \(M\) lên trục \(Ox,\,\,Oy,\,\,Oz\) nên \(A\left( { - 3;\,0;\,0} \right);\,\,B\left( {0;\,2;\,0} \right);\,\,C\left( {0;\,0;\,4} \right).\)

Suy ra phương trình mặt phẳng \(\left( {ABC} \right)\) dạng mặt chắn là: \(\dfrac{x}{{ - 3}} + \dfrac{y}{2} + \dfrac{z}{4} = 1 \Leftrightarrow 4x - 6y - 3z + 12 = 0\).

Trong các mặt phẳng đã cho, mặt phẳng song song với mặt phẳng \(\left( {ABC} \right)\) có phương trình là \(4x - 6y - 3z - 12 = 0\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com