Cho hàm số \(y = f\left( x \right)\) có đạo hàm thỏa mãn \(f'\left( 8 \right) = 5\). Giá trị của biểu
Cho hàm số \(y = f\left( x \right)\) có đạo hàm thỏa mãn \(f'\left( 8 \right) = 5\). Giá trị của biểu thức \(\mathop {\lim }\limits_{x \to 8} \dfrac{{f\left( x \right) - f\left( 8 \right)}}{{x - 8}}\) bằng:
Đáp án đúng là: B
Quảng cáo
Hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \(x = {x_0}\) khi tồn tại giới hạn \(\mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\). Khi đó \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Đáp án cần chọn là: B
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












