Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz\), cho các điểm \(A\left( {1;0;0} \right),\)\(B\left( {3;2;4} \right)\) và \(C\left(

Câu hỏi số 400969:
Vận dụng

Trong không gian \(Oxyz\), cho các điểm \(A\left( {1;0;0} \right),\)\(B\left( {3;2;4} \right)\) và \(C\left( {0;5;4} \right)\). Xét điểm \(M\left( {a;b;c} \right)\) thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất. Toạ độ của điểm \(M\) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:400969
Phương pháp giải

- Xác định tọa độ điểm \(I\) thỏa mãn \(\overrightarrow {IA}  + \overrightarrow {IB}  + 2\overrightarrow {IC}  = \overrightarrow 0 \).

- Phân tích \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC} } \right|\) bằng cách chèn điểm \(I\) vào mỗi vectơ.

- Xác định yếu tố cố định, yếu tố thay đổi, từ đó tìm GTNN của biểu thức.

Giải chi tiết

Giả sử \(I\) thoả mãn \(\overrightarrow {IA}  + \overrightarrow {IB}  + 2\overrightarrow {IC}  = \overrightarrow 0 .\)

\( \Leftrightarrow \left\{ \begin{array}{l}\left( {1 - {x_I}} \right) + \left( {3 - {x_I}} \right) + 2\left( {0 - {x_I}} \right) = 0\\\left( {0 - {y_I}} \right) + \left( {2 - {y_I}} \right) + 2\left( {5 - {y_I}} \right) = 0\\\left( {0 - {z_I}} \right) + \left( {4 - {z_I}} \right) + 2\left( {4 - {z_I}} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\\{z_I} = 3\end{array} \right.\)\( \Rightarrow I\left( {1;3;3} \right).\)

Ta có: \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC} } \right| = \left| {\overrightarrow {IA}  + \overrightarrow {IB}  + 2\overrightarrow {IC}  + 4\overrightarrow {MI} } \right| = \left| {4\overrightarrow {MI} } \right| = 4.MI\) (do \(\overrightarrow {IA}  + \overrightarrow {IB}  + 2\overrightarrow {IC}  = \overrightarrow 0 \)).

Nhận xét: \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất khi và chỉ khi \(MI\) nhỏ nhất.

Mà \(M\) thuộc mặt phẳng \(\left( {Oxy} \right) \Rightarrow M\)  là hình chiếu vuông góc của \(I\) lên \(\left( {Oxy} \right)\)\( \Rightarrow M\left( {1;3;0} \right)\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com