Gọi \(M\) là điểm biểu diễn cho số phức \({z_1} = a + \left( {{a^2} - 2a + 2} \right)i\) (với \(a\) là
Gọi \(M\) là điểm biểu diễn cho số phức \({z_1} = a + \left( {{a^2} - 2a + 2} \right)i\) (với \(a\) là số thực thay đổi) và \(N\) là điểm biểu diễn số phức \({z_2}\) biết \(\left| {{z_2} - 2 - i} \right| = \left| {{z_2} - 6 + i} \right|\). Tìm độ dài ngắn nhất của đoạn \(MN\).
Đáp án đúng là: A
Quảng cáo
- Tìm tọa độ điểm \(M\).
- Tìm quỹ tích điểm \(N\) là một đường thẳng \(d\), xác định phương trình đường thẳng.
- Khi đó \(M{N_{\min }} \Leftrightarrow MN = d\left( {M;d} \right)\).
- Khoảng cách từ \(M\left( {{x_0};{y_0}} \right)\) đến đường thẳng \(d:\,\,ax + by + c = 0\) là \(d\left( {M;d} \right) = \dfrac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












