Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập hợp các điểm biểu diễn cho số phức \(z\) thỏa mãn \(\left| {z + 1 - 2i} \right| = \left|

Câu hỏi số 401200:
Vận dụng

Tập hợp các điểm biểu diễn cho số phức \(z\) thỏa mãn \(\left| {z + 1 - 2i} \right| = \left| {\overline z  - 2 + i} \right|\) là một đường thẳng có phương trình:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:401200
Phương pháp giải

Gọi \(z = a + bi \Rightarrow \overline z  = a - bi\). Thay vào biểu thức đã cho rồi suy ra đường thẳng.

Giải chi tiết

Đặt \(z = a + bi \Rightarrow \overline z  = a - bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\)

Ta có \(\left| {z + 1 - 2i} \right| = \left| {\overline z  - 2 + i} \right|\).

\(\begin{array}{l} \Leftrightarrow \left| {a + 1 + \left( {b - 2} \right)i} \right| = \left| {a - 2 - \left( {b - 1} \right)i} \right|\\ \Leftrightarrow {\left( {a + 1} \right)^2} + {\left( {b - 2} \right)^2} = {\left( {a - 2} \right)^2} + {\left( {b - 1} \right)^2}\\ \Leftrightarrow {a^2} + 2a + 1 + {b^2} - 4b + 4 = {a^2} - 4a + 4 + {b^2} - 2b + 1\\ \Leftrightarrow 6a - 2b = 0 \Leftrightarrow 3a - b = 0\end{array}\)

Vậy tập hợp các điểm biểu diễn số phức \(z\) là đường thẳng \(3x - y = 0\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com