Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Xếp ngẫu nhiên \(10\) học sinh gồm \(2\) học sinh lớp \({\rm{12A}}\), \(3\) học sinh lớp

Câu hỏi số 402873:
Vận dụng cao

Xếp ngẫu nhiên \(10\) học sinh gồm \(2\) học sinh lớp \({\rm{12A}}\), \(3\) học sinh lớp \({\rm{12B}}\) và \(5\) học sinh lớp \({\rm{12C}}\) thành một hàng ngang. Xác suất để trong \(10\) học sinh trên không có \(2\) học sinh cùng lớp đứng cạnh nhau bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:402873
Giải chi tiết

Số cách xếp \(10\) học sinh vào \(10\) vị trí: \(n\left( \Omega  \right) = 10!\) cách.

Gọi \(A\) là biến cố: “Trong \(10\) học sinh trên không có \(2\) học sinh cùng lớp đứng cạnh nhau”.

Sắp xếp \(5\) học sinh lớp 12C vào \(5\) vị trí, có \(5!\) cách.

Ứng mỗi cách xếp \(5\) học sinh lớp 12C sẽ có \(6\) khoảng trống gồm \(4\) vị trí ở giữa và hai vị trí hai đầu để xếp các học sinh còn lại.

·          TH1: Xếp \(3\) học sinh lớp 12B vào \(4\) vị trí trống ở giữa (không xếp vào hai đầu), có \(A_4^3\) cách.

Ứng với mỗi cách xếp đó, chọn lấy \(1\) trong \(2\) học sinh lớp 12A xếp vào vị trí trống thứ \(4\) (để hai học sinh lớp 12C không được ngồi cạnh nhau), có \(2\) cách.

Học sinh lớp 12A còn lại có \(8\) vị trí để xếp, có \(8\) cách.

Theo quy tắc nhân, ta có \(5!.A_4^3.2.8\) cách.

·          TH2: Xếp \(2\) trong \(3\) học sinh lớp 12B vào \(4\) vị trí trống ở giữa và học sinh còn lại xếp vào hai đầu, có \(C_3^1.2.A_4^2\) cách.

Ứng với mỗi cách xếp đó sẽ còn \(2\) vị trí trống ở giữa, xếp \(2\) học sinh lớp 12A vào vị trí đó, có \(2\) cách.

Theo quy tắc nhân, ta có \(5!.C_3^1.2.A_4^2.2\) cách.

Do đó số cách xếp không có học sinh cùng lớp ngồi cạnh nhau là

\(n\left( A \right) = 5!.A_4^3.2.8 + 5!.C_3^1.2.A_4^2.2 = 63360\) cách.

Vậy \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \dfrac{{63360}}{{10!}} = \dfrac{{11}}{{630}}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com