Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian Oxyz, cho hai vecto \(\overrightarrow m  = \left( {4;3;1} \right)\) và \(\overrightarrow n  =

Câu hỏi số 403004:
Thông hiểu

Trong không gian Oxyz, cho hai vecto \(\overrightarrow m  = \left( {4;3;1} \right)\) và \(\overrightarrow n  = \left( {0;0;1} \right)\). Gọi \(\overrightarrow p \) là vecto cùng hướng với \(\left[ {\overrightarrow m ;\overrightarrow n } \right]\) và \(\left| {\overrightarrow p } \right| = 15\). Tìm tọa độ của \(\overrightarrow p \) là

Đáp án đúng là: B

Quảng cáo

Câu hỏi:403004
Phương pháp giải

- Tìm tích có hướng \(\left[ {\overrightarrow m ;\overrightarrow n } \right]\).

- Vì \(\overrightarrow p \) cùng hướng với \(\left[ {\overrightarrow m ;\overrightarrow n } \right]\) nên \(\overrightarrow p  = k\left[ {\overrightarrow m ;\overrightarrow n } \right]\) với \(k > 0\).

- Tìm \(\overrightarrow p \) và tính \(\left| {\overrightarrow p } \right|\), từ đó tìm được hằng số \(k\).

Giải chi tiết

Ta có \(\overrightarrow m  = \left( {4;3;1} \right);\,\,\overrightarrow n  = \left( {0;0;1} \right) \Rightarrow \left[ {\overrightarrow m ;\overrightarrow n } \right] = \left( {3; - 4;0} \right).\)

Mà \(\overrightarrow p ;\left[ {\overrightarrow m ;\overrightarrow n } \right]\) cùng hường nên \(\overrightarrow p  = \left( {3k; - 4k;0} \right);\left( {k > 0} \right)\)

Theo bài ra ta có: \(\left| {\overrightarrow p } \right| = 15\)

\(\begin{array}{l} \Rightarrow \sqrt {{{\left( {3k} \right)}^2} + {{\left( {4k} \right)}^2}}  = 15\\ \Leftrightarrow \sqrt {25{k^2}}  = 15\\ \Leftrightarrow 5k = 15\,\,\left( {Do\,\,k > 0} \right)\\ \Leftrightarrow k = 3\end{array}\)

Vậy \(\overrightarrow p  = \left( {9; - 12;0} \right).\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com