Tính môđun của số phức \(z = 2 + i + {i^{2019}}\).
Tính môđun của số phức \(z = 2 + i + {i^{2019}}\).
Đáp án đúng là: B
Quảng cáo
- Biến đổi \({i^{2019}} = {\left( {{i^2}} \right)^{1009}}.i\). Sử dụng \({i^2} = - 1\).
- Môđun của số phức \(z = a + bi\) là \(\left| z \right| = \sqrt {{a^2} + {b^2}} \).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












