Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( {2;1;1} \right)\) và mặt phẳng \(\left( P

Câu hỏi số 403319:
Thông hiểu

Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( {2;1;1} \right)\) và mặt phẳng \(\left( P \right):\,\,2x - y + 2z + 1 = 0\). Phương trình của mặt cầu tâm A và tiếp xúc với mặt phẳng (P) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:403319
Phương pháp giải

- Mặt cầu tâm A và tiếp xúc với mặt phẳng (P) là có bán kính \(R = d\left( {A;\left( P \right)} \right)\).

- Khoảng cách từ \(A\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\) là \(d\left( {A;\left( P \right)} \right) = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).

- Mặt cầu \(\left( S \right)\) tâm \(A\left( {a;b;c} \right)\), bán kính R có phương trình \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

Giải chi tiết

Mặt cầu tâm A và tiếp xúc với mặt phẳng (P) là có bán kính \(R = d\left( {A;\left( P \right)} \right) = \dfrac{{\left| {2.2 - 1 + 2.1 + 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = 2\).

Mặt cầu \(\left( S \right)\) tâm \(A\left( {2;1;1} \right)\), bán kính R = 2 có phương trình \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 4\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com