Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \({\log _a}\left( {\dfrac{{\sqrt[3]{{{a^7}}}.{a^{\frac{{11}}{3}}}}}{{{a^4}.\sqrt[7]{{{a^{ - 5}}}}}}} \right) =

Câu hỏi số 403571:
Thông hiểu

Cho \({\log _a}\left( {\dfrac{{\sqrt[3]{{{a^7}}}.{a^{\frac{{11}}{3}}}}}{{{a^4}.\sqrt[7]{{{a^{ - 5}}}}}}} \right) = \dfrac{m}{n}\) với \(a > 0,\,\,m,\,\,n \in {\mathbb{N}^*}\) và \(\dfrac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây đúng?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:403571
Phương pháp giải

\({x^m}.{x^n} = {x^{m + n}},\,\,\dfrac{{{x^m}}}{{{x^n}}} = {x^{m - n}},\,\,\sqrt[m]{{{x^n}}} = {x^{\frac{n}{m}}}\) (giả sử các biểu thức là có nghĩa).

\({\log _a}{x^m} = m{\log _a}x\) (giả sử các biểu thức là có nghĩa).

Giải chi tiết

Đặt \(A = \dfrac{{\sqrt[3]{{{a^7}}}.{a^{\frac{{11}}{3}}}}}{{{a^4}.\sqrt[7]{{{a^{ - 5}}}}}} = \dfrac{{{a^{\frac{7}{3}}}.{a^{\frac{{11}}{3}}}}}{{{a^4}.{a^{ - \frac{5}{7}}}}} = \dfrac{{{a^6}}}{{{a^{\frac{{23}}{7}}}}} = {a^{\frac{{19}}{7}}}\).

\(\begin{array}{l} \Rightarrow {\log _a}A = {\log _a}{a^{\frac{{19}}{7}}} = \dfrac{{19}}{7} = \dfrac{m}{n}\\ \Rightarrow m = 19,\,\,n = 7\,\,\left( {tm} \right).\end{array}\)

Vậy  \({m^2} - {n^2} = {19^2} - {7^2} = 312\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com