Trong mặt phẳng tọa độ, cho \(A,\,\,B,\,\,C\) là ba điểm biểu diễn lần lượt cho ba số phức
Trong mặt phẳng tọa độ, cho \(A,\,\,B,\,\,C\) là ba điểm biểu diễn lần lượt cho ba số phức \({z_1} = 5 - i\), \({z_2} = {\left( {4 + i} \right)^2}\) và \({z_3} = {\left( {2i} \right)^3}\). Diện tích của tam giác \(ABC\) là kết quả nào dưới đây?
Đáp án đúng là: B
Quảng cáo
- Số phức \(z = a + bi\) có điểm biểu diễn \(M\left( {a;b} \right)\). Từ đó xác định tọa độ các điểm \(A,\,\,B,\,\,C\).
- Tính độ dài các đoạn thẳng \(AB,\,\,AC,\,\,BC\), sử dụng công thức \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).
- Sử dụng công thức tính diện tích: \(S = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)} \) với \(p\) là nửa chu vi tam giác \(ABC\).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












