Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian Oxyz, cho điểm \(A\left( {3;0;0} \right),\) \(B\left( {0; - 2;0} \right)\) và \(C\left( {0;0; -

Câu hỏi số 403840:
Vận dụng

Trong không gian Oxyz, cho điểm \(A\left( {3;0;0} \right),\) \(B\left( {0; - 2;0} \right)\) và \(C\left( {0;0; - 4} \right)\). Mặt cầu ngoại tiếp tứ diện OABC có diện tích bằng

Đáp án đúng là: B

Quảng cáo

Câu hỏi:403840
Phương pháp giải

- Gọi \(I\left( {a;b;c} \right)\) là tâm mặt cầu ngoại tiếp tứ diện \(OABC\) \( \Rightarrow IO = IA = IB = IC\).

- Giải hệ phương trình \(\left\{ \begin{array}{l}I{O^2} = I{A^2}\\I{O^2} = I{B^2}\\I{O^2} = I{C^2}\end{array} \right.\) tìm tọa độ điểm \(I\).

- Tính bán kính mặt cầu \(R = OI\).

- Diện tích mặt cầu bán kính \(R\) là \(S = 4\pi {R^2}\).

Giải chi tiết

Gọi \(I\left( {a;b;c} \right)\) là tâm mặt cầu ngoại tiếp tứ diện \(OABC\) \( \Rightarrow IO = IA = IB = IC\)\( \Rightarrow I{O^2} = I{A^2} = I{B^2} = I{C^2}\).

Khi đó ta có hệ phương trình:

\(\left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} = {\left( {x - 3} \right)^2} + {y^2} + {z^2}\\{x^2} + {y^2} + {z^2} = {x^2} + {\left( {y + 2} \right)^2} + {z^2}\\{x^2} + {y^2} + {z^2} = {x^2} + {y^2} + {\left( {z + 4} \right)^2}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x^2} = {\left( {x - 3} \right)^2}\\{y^2} = {\left( {y + 2} \right)^2}\\{z^2} = {\left( {z + 4} \right)^2}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - 6x + 9 = 0\\4y + 4 = 0\\8z + 16 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{3}{2}\\y =  - 1\\z =  - 2\end{array} \right.\)

\( \Rightarrow I\left( {\dfrac{3}{2}; - 1;2} \right)\). Suy ra bán kính mặt cầu ngoại tiếp tứ diện \(OABC\) là \(R = IO = \sqrt {\dfrac{9}{4} + 1 + 4}  = \sqrt {\dfrac{{29}}{4}} \).

Váy diện tích cầu ngoại tiếp tứ diện \(OABC\) là \(S = 4\pi {R^2} = 4\pi .\dfrac{{29}}{4} = 29\pi .\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com