Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu giá trị nguyên dương của a để \(\int\limits_0^a {\left( {2x - 3} \right) \le 4}

Câu hỏi số 403841:
Vận dụng

Có bao nhiêu giá trị nguyên dương của a để \(\int\limits_0^a {\left( {2x - 3} \right) \le 4} \)?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:403841
Phương pháp giải

- Áp dụng các công thức tính nguyên hàm cơ bản: \(\int {{x^n}dx}  = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C\) \(\left( {n \ne  - 1} \right)\).

- Giải bất phương trình tìm \(a\) và suy ra các giá trị của \(a\) thỏa mãn.

Giải chi tiết

Ta có \(\int\limits_0^a {\left( {2x - 3} \right)dx}  = \left. {\left( {{x^2} - 3x} \right)} \right|_0^a = {a^2} - 3a.\)

Theo bài ra ta có: \(\int\limits_0^a {\left( {2x - 3} \right)dx}  \le 4\)\( \Rightarrow {a^2} - 3a \le 4 \Leftrightarrow  - 1 \le a \le 4.\)

Mà \(a \in {\mathbb{Z}^ + } \Rightarrow a \in \left\{ { - 1;0;1;2;3;4} \right\}.\)

Vậy có 6 giá trị của \(a\) thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com