Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hai hàm số \(y = g\left( x \right)\) và \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;c}

Câu hỏi số 404292:
Thông hiểu

Cho hai hàm số \(y = g\left( x \right)\) và \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;c} \right]\) có đồ thị như hình vẽ. Diện tích S của hình phẳng giới hạn bởi đồ thị hai hàm số trên được tính theo công thức:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:404292
Phương pháp giải

- Cho hàm số \(f\left( x \right)\)liên tục \(\left[ {a;b} \right]\), diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\),\(y = g\left( x \right)\), các đường thẳng \(x = a,\,\,x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} .\)

- Dựa vào đồ thị hàm số để phá trị tuyệt đối.

Giải chi tiết

Hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\) trên đoạn \(\left[ {a;c} \right]\) có diện tích\(S = \int\limits_a^c {\left| {f\left( x \right) - g\left( x \right)} \right|dx}  = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx}  + \int\limits_b^c {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)

Dựa vào đồ thị hàm số ta thấy:

+ Trên đoạn \(\left[ {a;b} \right]:\) \(f\left( x \right) > g\left( x \right) \Rightarrow f\left( x \right) - g\left( x \right) > 0\), do đó \(\left| {f\left( x \right) - g\left( x \right)} \right| = f\left( x \right) - g\left( x \right)\,\,\forall x \in \left[ {a;b} \right]\).

+ Trên đoạn \(\left[ {b;c} \right]:\) \(f\left( x \right) < g\left( x \right) \Rightarrow f\left( x \right) - g\left( x \right) < 0\), do đó \(\left| {f\left( x \right) - g\left( x \right)} \right| =  - \left[ {f\left( x \right) - g\left( x \right)} \right]\,\,\forall x \in \left[ {b;c} \right]\).

Vậy \(S = \int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx}  - \int\limits_b^c {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} .\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com