Biết \(\int\limits_1^3 {\dfrac{{2x - 3}}{{x + 1}}dx} = a\ln 2 + b\) với \(a,\,\,b\) là các số hữu tỉ. Khi
Biết \(\int\limits_1^3 {\dfrac{{2x - 3}}{{x + 1}}dx} = a\ln 2 + b\) với \(a,\,\,b\) là các số hữu tỉ. Khi đó \({b^2} - 2a\) bằng
Đáp án đúng là: B
Quảng cáo
- Chia tử cho mẫu.
- Áp dụng các công thức tính nguyên hàm: \(\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C\)\(\left( {n \ne - 1} \right)\), \(\int {\dfrac{1}{{ax + b}}dx = \dfrac{1}{a}\ln \left| {ax + b} \right|} + C.\)
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












