Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hai số phức \({z_1} =  - 1 + 2i;\) \({z_2} = 1 + 2i\). Tinh \(T = {\left| {{z_1}} \right|^2} + {\left| {{z_2}}

Câu hỏi số 404294:
Nhận biết

Cho hai số phức \({z_1} =  - 1 + 2i;\) \({z_2} = 1 + 2i\). Tinh \(T = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:404294
Phương pháp giải

Số phức \(z = a + bi\) có môđun \(\left| z \right| = \sqrt {{a^2} + {b^2}} \).

Giải chi tiết

Ta có

\(\begin{array}{l}{z_1} =  - 1 + 2i \Rightarrow \left| {{z_1}} \right| = \sqrt {{{\left( { - 1} \right)}^2} + {2^2}}  = \sqrt 5 \\{z_2} = 1 + 2i \Rightarrow \left| {{z_2}} \right| = \sqrt {{1^2} + {2^2}}  = \sqrt 5 \end{array}\)

Vậy \(T = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} = 5 + 5 = 10.\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com