Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = {\tan ^2}x\) biết phương trình
Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = {\tan ^2}x\) biết phương trình \(F\left( x \right) = 0\) có một nghiệm bằng \(\dfrac{\pi }{4}.\)
Đáp án đúng là: B
Quảng cáo
- Sử dụng biến đổi lượng giác: \({\tan ^2}x = \dfrac{1}{{{{\cos }^2}x}} - 1\).
- Sử dụng công thức nguyên hàm cơ bản: \(\int {\dfrac{{dx}}{{{{\cos }^2}x}}} = \tan x + C\).
- Sử dụng giả thiết \(F\left( {\dfrac{\pi }{4}} \right) = 0\) tìm C.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












