Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Số đường tiệm cận của đồ thị hàm số \(y = \dfrac{{x - 2}}{{\sqrt {{x^2} - 4} }}\) là:

Câu hỏi số 404558:
Thông hiểu

Số đường tiệm cận của đồ thị hàm số \(y = \dfrac{{x - 2}}{{\sqrt {{x^2} - 4} }}\) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:404558
Phương pháp giải

- Tìm ĐKXĐ của hàm số.

- Sử dụng định nghĩa các đường tiệm cận của đồ thị hàm số \(y = f\left( x \right)\):

   + Đường thẳng \(y = {y_0}\) được gọi là TCN của đồ thị hàm số \(y = f\left( x \right)\) nếu thỏa mãn một trong các điều kiện sau: \(\mathop {\lim }\limits_{x \to  + \infty } y = {y_0}\), \(\mathop {\lim }\limits_{x \to  - \infty } y = {y_0}\).

   + Đường thẳng \(x = {x_0}\) được gọi là TCN của đồ thị hàm số \(y = f\left( x \right)\) nếu thỏa mãn một trong các điều kiện sau: \(\mathop {\lim }\limits_{x \to x_0^ + } y =  + \infty \), \(\mathop {\lim }\limits_{x \to x_0^ + } y =  - \infty \), \(\mathop {\lim }\limits_{x \to x_0^ - } y =  + \infty \), \(\mathop {\lim }\limits_{x \to x_0^ - } y =  - \infty \).

Giải chi tiết

TXĐ: \(D = \left( { - \infty ; - 2} \right) \cup \left( {2; + \infty } \right)\).

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{x - 2}}{{\sqrt {{x^2} - 4} }} = 0\\\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{x - 2}}{{\sqrt {{x^2} - 4} }} =  - \infty \end{array}\)

Suy ra \(x =  - 2\) là tiệm cận đứng của đồ thị hàm số.

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x - 2}}{{\sqrt {{x^2} - 4} }} = 1\\\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x - 2}}{{\sqrt {{x^2} - 4} }} =  - 1\end{array}\)

Suy ra \(y = 1,\,\,y =  - 1\) là tiệm cận ngang của đồ thị hàm số.

Vậy đồ thị hàm số đã cho có tất cả 3 đường tiệm cận.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com