Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình \({z^2} + az + b = 0\left( {a,b \in \mathbb{R}} \right)\) có một nghiệm phức \(z = 1 - 3i\). Khi

Câu hỏi số 404872:
Vận dụng

Phương trình \({z^2} + az + b = 0\left( {a,b \in \mathbb{R}} \right)\) có một nghiệm phức \(z = 1 - 3i\). Khi đó \(2{a^3} + 2{b^3} + 3\) bằng

Đáp án đúng là: B

Quảng cáo

Câu hỏi:404872
Phương pháp giải

- Phương trình bậc hai có 1 nghiệm \(z = a + bi\) thì nghiệm thứ 2 có dạng \(z = a - bi\).

- Áp dụng định lý Vi-et: \({x_1} + {x_2} = \dfrac{{ - b}}{a}\), \({x_1}{x_2} = \dfrac{c}{a}\).

Giải chi tiết

Phương trình \({z^2} + az + b = 0\) có 1 nghiệm phức \({z_1} = 1 - 3i \Rightarrow {z_2} = 1 + 3i\)

Áp dụng định lý Vi-et ta có \(\left\{ \begin{array}{l}{z_1} + {z_2} =  - a\\{z_1}.{z_2} = b\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a =  - 2\\b = 10\end{array} \right.\)

Khi đó \(T = 2{a^3} + 2{b^3} + 3 = 1987\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com