Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian Oxyz, goi \(\left( P \right)\) là mặt phẳng đi qua \(M\left( {3;2;1} \right)\) và cắt trục

Câu hỏi số 404879:
Vận dụng

Trong không gian Oxyz, goi \(\left( P \right)\) là mặt phẳng đi qua \(M\left( {3;2;1} \right)\) và cắt trục \(x'Ox,\) \(y'Oy,\) \(z'Oz\) lần lượt tại các iểm \(A,\,\,B,\,\,C\) sao cho M là trực tâm của tam giác ABC. Phương trình của \(\left( P \right)\) là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:404879
Phương pháp giải

- Tìm giao điểm của \(\left( P \right)\) với các hệ trục tọa độ.

- Sử dụng tính chất của trực tâm để suy ra mặt phẳng \(\left( P \right)\).

Giải chi tiết

Gọi giao điểm của mặt phẳng \(\left( P \right)\) với các trục x’Ox;y’Oy;z’Oz là \(A\left( {a;0;0} \right);B\left( {0;b;0} \right);C\left( {0;0;c} \right)\)

Nên mặt phẳng \(\left( P \right)\) có dạng \(\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1\) và đi qua điểm \(M\left( {3;2;1} \right)\)\( \Rightarrow \dfrac{3}{a} + \dfrac{2}{b} + \dfrac{1}{c} = 1\)(*)

Và \(M\left( {3;2;1} \right)\) là trực tâm tam giác ABC nên \(\left\{ \begin{array}{l}\overrightarrow {AM} .\overrightarrow {BC}  = 0\\\overrightarrow {BM} .\overrightarrow {AC}  = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}2b + c = 0\\3a + c = 0\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}b =  - \dfrac{c}{2}\\a =  - \dfrac{c}{3}\end{array} \right.\)

Thay vào (*) ta có \(c =  - 12 \Rightarrow \left\{ \begin{array}{l}a = 4\\b = 6\end{array} \right.\)

Khi đó phương trình mặt phẳng \(\left( P \right)\) là \(\dfrac{x}{4} + \dfrac{y}{6} - \dfrac{z}{{12}} = 1 \Rightarrow 3x + 2y - z - 12 = 0\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com