Có bao nhiêu số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn \({\log _3}\left( {x + y} \right) =
Có bao nhiêu số nguyên \(x\) sao cho tồn tại số thực \(y\) thỏa mãn \({\log _3}\left( {x + y} \right) = {\log _4}\left( {{x^2} + {y^2}} \right)\,?\)
Đáp án đúng là: B
Quảng cáo
- Tìm ĐKXĐ của phương trình.
- Đặt \({\log _3}\left( {x + y} \right) = {\log _4}\left( {{x^2} + {y^2}} \right) = t\), biểu diễn \(P = x + y\) và \(S = xy\) theo \(t\).
- Sử dụng định lí Vi-ét đảo, khi đó \(x,\,\,y\) là nghiệm của phương trình \({X^2} - SX + P = 0\) (ẩn t).
- Tìm điều kiện để phương trình \({X^2} - SX + P = 0\) ẩn t có nghiệm, chặn khoảng giá trị của \(t\).
- Từ đó chặn khoảng giá trị của \({x^2} + {y^2}\) và tìm các số nguyên x thỏa mãn.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













