Biết phương trình \({z^2} + 2z + m = 0\,\,\left( {m \in \mathbb{R}} \right)\) có một nghiệm là \({z_1} = -
Biết phương trình \({z^2} + 2z + m = 0\,\,\left( {m \in \mathbb{R}} \right)\) có một nghiệm là \({z_1} = - 1 + 3i\). Gọi \({z_2}\) là nghiệm còn lại. Phần ảo của số phức \({\rm{w}} = {z_1} - 2{z_2}\) bằng
Đáp án đúng là: C
Quảng cáo
- Phương trình bậc hai nếu có 1 nghiệm phức là \(z = a + bi\) thì cũng sẽ nhận \(\overline z = a - bi\) là nghiệm.
- Thay hai số phức \({z_1},\,\,{z_2}\) tính số phức \(w\).
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












