Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Diện tích hình phẳng giới hạn bởi hai parabol \(y = {x^2} + 3x - 1\)và \(y =  - {x^2} + x + 3\) được

Câu hỏi số 405909:
Thông hiểu

Diện tích hình phẳng giới hạn bởi hai parabol \(y = {x^2} + 3x - 1\)và \(y =  - {x^2} + x + 3\) được tô đậm trong hình bên có giá trị bằng

Đáp án đúng là: C

Quảng cáo

Câu hỏi:405909
Phương pháp giải

- Dựa vào đồ thị hàm số xác định các giao điểm \(x = a,\,\,x = b\).

- Cho hàm số \(f\left( x \right)\)liên tục \(\left[ {a;b} \right]\), diện tích hình phẳng giới hạn bởi đồ thị hàm số \(f\left( x \right)\),\(g\left( x \right)\), các đường thẳng \(x = a,\,\,x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} .\)

- Dựa vào đồ thị hàm số, xác định dấu và phá trị tuyệt đối.

- Tính tích phân.

Giải chi tiết

Dựa vào đồ thị ta thấy đồ thị hai hàm số \(y = {x^2} + 3x - 1\) và \(y =  - {x^2} + x + 3\) cắt nhau tại 2 điểm là \(x =  - 2;\,\,x = 1.\)

Diện tích hình phẳng giới hạn bởi hai parabol \(y = {x^2} + 3x - 1;y =  - {x^2} + x + 3\) là

\(\begin{array}{l}S = \int\limits_{ - 2}^1 {\left[ { - {x^2} + x + 3 - \left( {{x^2} + 3x - 1} \right)} \right]dx} \\S = \int\limits_{ - 2}^1 {\left( { - 2{x^2} - 2x + 4} \right)dx} \end{array}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com