Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Nếu \(\int\limits_1^3 {f\left( x \right)dx}  = 3\) thì \(\int\limits_1^5 {f\left( {\dfrac{{x + 1}}{2}} \right)dx}

Câu hỏi số 405928:
Vận dụng

Nếu \(\int\limits_1^3 {f\left( x \right)dx}  = 3\) thì \(\int\limits_1^5 {f\left( {\dfrac{{x + 1}}{2}} \right)dx} \) bằng

Đáp án đúng là: D

Quảng cáo

Câu hỏi:405928
Phương pháp giải

- Đổi biến \(t = \dfrac{{x + 1}}{2}\).

- Vi phân hai vế.

- Đổi cận, thay toàn bộ biến x thành biến t.

- Sử dụng tính chất không phụ thuộc biến của tích phân: \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_a^b {f\left( t \right)dt} \).

Giải chi tiết

Ta có \(I = \int\limits_1^5 {f\left( {\dfrac{{x + 1}}{2}} \right)dx} \)

Đặt \(t = \dfrac{{x + 1}}{2} \Rightarrow dt = \dfrac{{dx}}{2} \Leftrightarrow dx = 2dt\)

Đổi cận: \(\left\{ \begin{array}{l}x = 1 \Rightarrow t = 1\\x = 5 \Rightarrow t = 3\end{array} \right.\).

Khi đó ta có: \(I = 2\int\limits_1^3 {f\left( t \right)dt}  = 2\int\limits_1^3 {f\left( x \right)dx}  = 2.3 = 6.\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com