Giải phương trình \(\cos 10x - \cos 8x - \cos 6x + 1 = 0\).
Giải phương trình \(\cos 10x - \cos 8x - \cos 6x + 1 = 0\).
Đáp án đúng là: D
Quảng cáo
- Sử dụng công thức biến đổi tổng thành tích: \(\cos a - \cos b = - 2\sin \dfrac{{a + b}}{2}\sin \dfrac{{a - b}}{2}\) và công thức nhân đôi \(\cos 2\alpha = 1 - 2{\sin ^2}\alpha \).
- Đưa phương trình đã cho về dạng tích.
- Tiếp tục sử dụng công thức nhân đôi \(\sin 2\alpha = 2\sin \alpha \cos \alpha \).
- Giải phương trình lượng giác cơ bản: \(\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
- Kết hợp nghiệm.
Đáp án cần chọn là: D
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












