Giải phương trình \(1 + \sin x + \cos 3x = \cos x + \sin 2x + \cos 2x\).
Giải phương trình \(1 + \sin x + \cos 3x = \cos x + \sin 2x + \cos 2x\).
Đáp án đúng là: C
Quảng cáo
- Nhóm \(1 - \cos 2x\), \(\sin x - \sin 2x\), \(\cos 3x - \cos x\).
- Sử dụng công thức nhân đôi: \(1 - \cos 2x = 2{\sin ^2}x\), công thức biến đổi tổng thành tích: \(\cos a - \cos b = - 2\sin \dfrac{{a + b}}{2}\sin \dfrac{{a - b}}{2}\).
- Đưa phương trình đã cho về dạng tích.
- Giải phương trình lượng giác cơ bản: \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
Đáp án cần chọn là: C
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












