Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Xét sự biến thiên của hàm số \(y = \sin x - \cos x\). Trong các kết luận sau, kết luận nào

Câu hỏi số 409759:
Vận dụng

Xét sự biến thiên của hàm số \(y = \sin x - \cos x\). Trong các kết luận sau, kết luận nào đúng?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:409759
Phương pháp giải

- Biến đổi: \(\sin x - \cos x = \sqrt 2 \sin \left( {x - \dfrac{\pi }{4}} \right)\).

- Xác định chu kì tuần hoàn của hàm số và suy ra các khoảng đơn điệu của hàm số.

- Hàm số \(y = \sin x\) đồng (nghịch) biến trên \(\left( {a;b} \right)\) thì hàm số \(y = \sin \left( {x - k} \right)\) đồng (nghịch) biến trên khoảng \(\left( {a + k;b + k} \right)\).

Giải chi tiết

Ta có: \(\sin x - \cos x = \sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)\) nên tập giá trị của hàm số là \(\left[ { - \sqrt 2 ;\sqrt 2 } \right]\), do đó loại đáp án C.

Hàm số đã cho tuần hoàn với chu kì \(2\pi \), ta xét sự biến thiên của hàm số trên đoạn \(\left[ { - \dfrac{\pi }{4};\dfrac{{7\pi }}{4}} \right]\).

- Hàm số \(y = \sin x\) đồng biến trên \(\left( { - \dfrac{\pi }{2};\dfrac{\pi }{2}} \right)\) nên hàm số \(y = \sqrt 2 \sin \left( {x - \dfrac{\pi }{4}} \right)\) đồng biến trên \(\left( { - \dfrac{\pi }{4};\dfrac{{3\pi }}{4}} \right)\).

- Hàm số \(y = \sin x\) nghịch biến trên \(\left( {\dfrac{\pi }{2};\dfrac{{3\pi }}{2}} \right)\) nên hàm số \(y = \sqrt 2 \sin \left( {x - \dfrac{\pi }{4}} \right)\) nghịch biến trên \(\left( {\dfrac{{3\pi }}{4};\dfrac{{7\pi }}{4}} \right)\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com