Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có  đáy \(ABCD\) là hình thoi \(AB = a,\,\widehat {ABC} = {60^0}\). \(SA \bot \left(

Câu hỏi số 410237:
Vận dụng

Cho hình chóp \(S.ABCD\) có  đáy \(ABCD\) là hình thoi \(AB = a,\,\widehat {ABC} = {60^0}\). \(SA \bot \left( {ABCD} \right)\) và SC tạo với mặt phẳng \(\left( {SAB} \right)\) một góc \({45^0}\). Tính thể tích \(V\) của khối chóp \(S.ABC\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:410237
Phương pháp giải

- Chứng minh \(\Delta ABC\) đều, sử dụng công thức tính nhanh diện tích tam giác đều cạnh a là \(S = \dfrac{{{a^2}\sqrt 3 }}{4}\).

- Xác định góc giữa SC và (SAB) là góc giữa SC và hình chiếu của SC lên (SAB).

- Sử dụng tỉ số lượng giác và định lí Pytago tính độ dài SA.

- Sử dụng công thức tính thể tích \({V_{S.ABC}} = \dfrac{1}{3}SA.{S_{\Delta ABC}}\).

Giải chi tiết

Tam giác ABC có AB = BC, \(\,\angle ABC = {60^0}\) \( \Rightarrow \Delta ABC\) đều, có cạnh \(AB = a\)\( \Rightarrow {S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\).

Gọi I là trung điểm của AB \( \Rightarrow CI \bot AB\) (do tam giác ABC đều).

Mà \(CI \bot SA \Rightarrow CI \bot \left( {SAB} \right)\)\( \Rightarrow \) Hình chiếu của SC lên (SAB) là SI.

\( \Rightarrow \angle \left( {SC;\left( {SAB} \right)} \right) = \angle \left( {SC;SI} \right) = \angle ISC = {45^0}\)

\( \Rightarrow \Delta SIC\) vuông cân tại I \( \Rightarrow SI = IC = \dfrac{{a\sqrt 3 }}{2}\).

Ta có: \(\Delta SAI\) vuông tại A \( \Rightarrow SA = \sqrt {S{I^2} - A{I^2}}  = \sqrt {{{\left( {\dfrac{{a\sqrt 3 }}{2}} \right)}^2} - {{\left( {\dfrac{a}{2}} \right)}^2}}  = \dfrac{{a\sqrt 2 }}{2}\)

Vậy thể tích khối chóp \(S.ABC\) là: \(V = \dfrac{1}{3}.SA.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt 2 }}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 6 }}{{24}}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com