Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho parabol \(\left( P \right):y =  - {x^2}\) và đường thẳng \(\left( d \right):y = x + m - 2.\) Tìm tất

Câu hỏi số 411076:
Vận dụng

Cho parabol \(\left( P \right):y =  - {x^2}\) và đường thẳng \(\left( d \right):y = x + m - 2.\) Tìm tất cả các giá trị của tham số \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\) thỏa mãn \(x_1^2 + x_2^2 < 3\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:411076
Phương pháp giải

Đường thẳng \(d\) cắt \(\left( P \right)\) tại hai điểm phân biệt \( \Leftrightarrow \) phương trình hoành độ giao điểm \(\left( * \right)\) của hai đồ thị hàm số có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0.\)

Áp dụng hệ thức Vi-et và hệ thức bài cho để tìm \(m.\)

Giải chi tiết

Xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right):\) \( - {x^2} = x + m - 2\)\( \Leftrightarrow {x^2} + x + m - 2 = 0\,\,\,\,\left( 1 \right)\)

Ta có: \(\Delta  = 1 - 4\left( {m - 2} \right) = 9 - 4m\)

Đường thẳng \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt \( \Leftrightarrow \) Phương trình \(\left( 1 \right)\)có hai nghiệm phân biệt

\( \Leftrightarrow \Delta  > 0\)\( \Leftrightarrow 9 - 4m > 0\)\( \Leftrightarrow m < \frac{9}{4}\)

Với \(m < \frac{9}{4}\) thì phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}.\)

Áp dụng hệ thức Vi-et, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 1\\{x_1}{x_2} = m - 2\end{array} \right.\).

Theo đề bài ta có: \(x_1^2 + x_2^2 < 3\)

\(\begin{array}{l} \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} < 3\\ \Leftrightarrow {\left( { - 1} \right)^2} - 2\left( {m - 2} \right) < 3\\ \Leftrightarrow 1 - 2m + 4 < 3\\ \Leftrightarrow 2m > 2\\ \Leftrightarrow m > 1\end{array}\)

Kết hợp với điều kện \(m < \frac{9}{4}\) ta được: \(1 < m < \frac{9}{4}\) thỏa mãn bài toán.

Đáp án cần chọn là: B

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com