Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\), có đồ thị \(f\left( x \right)\) như

Câu hỏi số 411314:
Vận dụng cao

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\), có đồ thị \(f\left( x \right)\) như hình vẽ. Hàm số \(g\left( x \right) = f\left( {{x^3} + x} \right)\) đạt cực tiểu tại điểm \({x_0}\). Giá trị  \({x_0}\)thuộc khoảng nào sau đây?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:411314
Phương pháp giải

- Tính đạo hàm hàm số \(g\left( x \right)\).

- Giải phương trình \(g'\left( x \right) = 0\).

- Lập BBT của hàm số \(g\left( x \right)\) và suy ra điểm cực tiểu của hàm số.

Giải chi tiết

Ta có: \(g\left( x \right) = f\left( {{x^3} + x} \right)\) \( \Rightarrow g'\left( x \right) = \left( {3{x^2} + 1} \right)f'\left( {{x^3} + x} \right)\).

\(g'\left( x \right) = 0 \Leftrightarrow \left( {3{x^2} + 1} \right)f'\left( {{x^3} + x} \right) = 0\) \( \Leftrightarrow f'\left( {{x^3} + x} \right) = 0\).

Dựa vào đồ thị hàm số \(y = f\left( x \right)\) ta thấy hàm số có hai điểm cực trị \(x = 0,\,\,x = 2\).

Do đó \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^3} + x = 0\\{x^3} + x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\).

Chọn \(x = 2\) ta có \(g'\left( 2 \right) = 13f'\left( {10} \right) < 0\), các nghiệm \(x = 0,\,\,\,x = 1\) là các nghiệm đơn nên qua các nghiệm này \(g'\left( x \right)\) đổi dấu.

BBT:

Dựa vào BBT ta thấy điểm cực tiểu của hàm số \(y = g\left( x \right)\) là \({x_0} = 0 \in \left( { - 1;1} \right)\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com