Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(x,\,\,y\) là các số thực dương thỏa mãn \({\log _2}\dfrac{{3x + 3y + 4}}{{{x^2} + {y^2}}}\) \( =

Câu hỏi số 411330:
Vận dụng cao

Cho \(x,\,\,y\) là các số thực dương thỏa mãn \({\log _2}\dfrac{{3x + 3y + 4}}{{{x^2} + {y^2}}}\) \( = \left( {x + y - 1} \right)\left( {2x + 2y - 1} \right) - 4\left( {xy + 1} \right)\). Giá trị lớn nhất của biểu thức \(P = \dfrac{{5x + 3y - 2}}{{2x + y + 1}}\) bằng:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:411330
Phương pháp giải

- Biến đổi, xét hàm đặc trưng \(f\left( t \right) = {\log _2}t + t\,\,\left( {t > 0} \right)\).

- Sử dụng BĐT \({\left( {x + y} \right)^2} \le 2\left( {{x^2} + {y^2}} \right)\), kẹp khoảng giá trị của \(x + y\).

- Biến đổi biểu thức \(P = 2 + \dfrac{{x + y - 4}}{{2x + y + 1}}\), đánh giá và suy ra GTLN của \(P\).

Giải chi tiết

Ta có:

\(\begin{array}{l}\,\,\,\,\,{\log _2}\dfrac{{3x + 3y + 4}}{{{x^2} + {y^2}}} = \left( {x + y - 1} \right)\left( {2x + 2y - 1} \right) - 4\left( {xy + 1} \right)\\ \Leftrightarrow {\log _2}\left( {3x + 3y + 4} \right) - {\log _2}\left( {{x^2} + {y^2}} \right) = \left( {x + y - 1} \right)\left[ {2\left( {x + y} \right) - 1} \right] - 4\left( {xy + 1} \right)\\ \Leftrightarrow {\log _2}\left( {3x + 3y + 4} \right) - {\log _2}\left( {{x^2} + {y^2}} \right) = 2{\left( {x + y} \right)^2} - 3\left( {x + y} \right) + 1 - 4\left( {xy + 1} \right)\\ \Leftrightarrow {\log _2}\left( {3x + 3y + 4} \right) - {\log _2}\left( {{x^2} + {y^2}} \right) = 2\left( {{x^2} + {y^2}} \right) + 4xy - \left( {3x + 3y} \right) + 1 - 4xy - 4\\ \Leftrightarrow {\log _2}\left( {3x + 3y + 4} \right) - {\log _2}\left( {{x^2} + {y^2}} \right) = 2\left( {{x^2} + {y^2}} \right) - \left( {3x + 3y + 4} \right) + 1\\ \Leftrightarrow {\log _2}\left( {3x + 3y + 4} \right) + \left( {3x + 3y + 4} \right) = {\log _2}\left( {{x^2} + {y^2}} \right) + 2\left( {{x^2} + {y^2}} \right) + {\log _2}2\\ \Leftrightarrow {\log _2}\left( {3x + 3y + 4} \right) + \left( {3x + 3y + 4} \right) = {\log _2}\left( {2{x^2} + 2{y^2}} \right) + \left( {2{x^2} + 2{y^2}} \right)\,\,\,\left( * \right)\end{array}\)

Xét hàm số đặc trưng \(f\left( t \right) = {\log _2}t + t\,\,\left( {t > 0} \right)\) ta có \(f'\left( t \right) = \dfrac{1}{{t\ln 2}} + 1 > 0\,\,\forall t > 0\).

\( \Rightarrow \) Hàm số \(y = f\left( t \right)\) luôn đồng biến trên \(\left( {0; + \infty } \right)\).

Do đó \(\left( * \right) \Leftrightarrow 3x + 3y + 4 = 2{x^2} + 2{y^2}\).

Ta có: \({\left( {x + y} \right)^2} \le 2\left( {{x^2} + {y^2}} \right) = 3x + 3y + 4\).

\( \Leftrightarrow {\left( {x + y} \right)^2} - 3\left( {x + y} \right) - 4 \le 0 \Leftrightarrow  - 1 \le x + y \le 4\).

Kết hợp điều kiện đề bài ta có \(0 < x + y \le 4\).

Xét biểu thức \(P = \dfrac{{5x + 3y - 2}}{{2x + y + 1}} = \dfrac{{2\left( {2x + y + 1} \right) + x + y - 4}}{{2x + y + 1}} = 2 + \dfrac{{x + y - 4}}{{2x + y + 1}}\).

Do \(x + y \le 4 \Leftrightarrow x + y - 4 \le 0 \Leftrightarrow \dfrac{{x + y - 4}}{{2x + y + 1}} \le 0\) \( \Rightarrow P \le 2\).

Vậy \({P_{\max }} = 2 \Leftrightarrow \left\{ \begin{array}{l}x + y = 4\\x = y\end{array} \right. \Leftrightarrow x = y = 2\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com