Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giả sử ta có hệ thức \({a^2} + 4{b^2} = 5ab{\rm{ }}\left( {a,b > 0} \right).\) Hệ thức nào sau đây

Câu hỏi số 411947:
Vận dụng

Giả sử ta có hệ thức \({a^2} + 4{b^2} = 5ab{\rm{ }}\left( {a,b > 0} \right).\) Hệ thức nào sau đây đúng?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:411947
Phương pháp giải

- Thêm cả 2 vế với \(4ab\) để tạo hằng đẳng thức.

- Sử dụng các công thức:

   \(\begin{array}{l}{\log _a}\left( {xy} \right) = {\log _a}x + {\log _a}y\,\,\left( {0 < a \ne 1,\,\,x,\,\,y > 0} \right)\\{\log _a}{x^m} = m{\log _a}x\,\,\left( {0 < a \ne 1,\,\,x > 0} \right)\\{\log _a}x - {\log _a}y = {\log _a}\dfrac{x}{y}\,\,\left( {0 < a \ne 1,\,\,x,\,\,y > 0} \right)\end{array}\)

Giải chi tiết

Theo bài ra ta có:

\(\begin{array}{l}{a^2} + 4{b^2} = 5ab\\ \Leftrightarrow {a^2} + 4ab + 4{b^2} = 9ab\\ \Leftrightarrow {\left( {a + 2b} \right)^2} = 9ab\end{array}\)

Lấy logarit cơ số 3 hai vế phương trình ta có:

\(\begin{array}{l}{\log _3}{\left( {a + 2b} \right)^2} = {\log _3}\left( {9ab} \right)\,\,\left( {a,\,\,b > 0} \right)\\ \Leftrightarrow 2{\log _3}\left( {a + 2b} \right) = {\log _3}9 + {\log _3}a + {\log _3}b\\ \Leftrightarrow 2{\log _3}\left( {a + 2b} \right) = 2 + {\log _3}a + {\log _3}b\\ \Leftrightarrow 2{\log _3}\left( {a + 2b} \right) - 2 = {\log _3}a + {\log _3}b\\ \Leftrightarrow 2\left[ {{{\log }_3}\left( {a + 2b} \right) - {{\log }_3}3} \right] = {\log _3}a + {\log _3}b\\ \Leftrightarrow 2{\log _3}\dfrac{{a + 2b}}{3} = {\log _3}a + {\log _3}b\end{array}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com