Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_1^9 {\dfrac{{f\left( {\sqrt x }

Câu hỏi số 412229:
Vận dụng

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_1^9 {\dfrac{{f\left( {\sqrt x } \right)}}{{\sqrt x }}{\rm{d}}x = 4} ,\)\(\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)\cos x{\rm{d}}x = 2} .\) Tính tích phân \(I = \int\limits_0^3 {f\left( x \right){\rm{d}}x} .\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:412229
Phương pháp giải

- Tính tích phân bằng phương pháp đổi biến số.

- Đối với tích phân \(\int\limits_1^9 {\dfrac{{f\left( {\sqrt x } \right)}}{{\sqrt x }}{\rm{d}}x = 4} \), đặt \(t = \sqrt x \).

- Đối với tích phân \(\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)\cos x{\rm{d}}x = 2} \), đặt \(u = \sin x\).

- Sử dụng tính chất tích phân: \(\int\limits_a^b {f\left( x \right)dx}  + \int\limits_b^c {f\left( x \right)dx}  = \int\limits_a^c {f\left( x \right)dx} \).

Giải chi tiết

Xét tích phân \(\int\limits_1^9 {\dfrac{{f\left( {\sqrt x } \right)}}{{\sqrt x }}{\rm{d}}x = 4} \).

Đặt \(t = \sqrt x  \Rightarrow {t^2} = x \Rightarrow 2tdt = dx\).

Đổi cận: \(\left\{ \begin{array}{l}x = 1 \Rightarrow t = 1\\x = 9 \Rightarrow t = 3\end{array} \right.\).

Khi đó ta có: \(\int\limits_1^9 {\dfrac{{f\left( {\sqrt x } \right)}}{{\sqrt x }}{\rm{d}}x}  = \int\limits_1^3 {\dfrac{{f\left( t \right)2tdt}}{t}}  = 2\int\limits_1^3 {f\left( t \right)dt}  = 2\int\limits_1^3 {f\left( x \right)dx} \).

\( \Rightarrow 2\int\limits_1^3 {f\left( x \right)dx}  = 4 \Leftrightarrow \int\limits_1^3 {f\left( x \right)dx}  = 2\).

Xét tích phân \(\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)\cos x{\rm{d}}x = 2} \).

Đặt \(u = \sin x \Rightarrow du = \cos xdx\).

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow u = 0\\x = \dfrac{\pi }{2} \Rightarrow u = 1\end{array} \right.\).

Khi đó ta có: \(\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)\cos x{\rm{d}}x}  = \int\limits_0^1 {f\left( u \right)du}  = \int\limits_0^1 {f\left( x \right)dx}  = 2\).

Vậy \(I = \int\limits_0^3 {f\left( x \right){\rm{d}}x}  = \int\limits_0^1 {f\left( x \right){\rm{d}}x}  + \int\limits_1^3 {f\left( x \right){\rm{d}}x}  = 2 + 2 = 4\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com