Cho hàm số \(f\left( x \right) = {\log _2}\left( {\cos x} \right).\) Phương trình \(f'\left( x \right) = 0\) có
Cho hàm số \(f\left( x \right) = {\log _2}\left( {\cos x} \right).\) Phương trình \(f'\left( x \right) = 0\) có bao nhiêu nghiệm trong khoảng \(\left( {0;2020\pi } \right)?\)
Đáp án đúng là: B
Quảng cáo
- Tìm ĐKXĐ của phương trình.
- Sử dụng công thức tính đạo hàm: \({\left( {{{\log }_a}u} \right)^\prime } = \dfrac{{u'}}{{u.\ln a}}\).
- Giải phương trình lượng giác cơ bản: \(\tan x = 0 \Leftrightarrow x = k\pi \) hoặc \(\sin x = 0 \Leftrightarrow x = k\pi \).
- Đối chiếu điều kiện xác định để suy ra nghiệm của phương trình.
- Cho nghiệm tìm được thuộc \(\left( {0;2020\pi } \right)\), tìm số nghiệm thỏa mãn.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












