Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Gọi \(S\) là tập hợp các số tự nhiên có 4 chữ số khác nhau. Chọn ngẫu nhiên một số từ

Câu hỏi số 412816:
Vận dụng

Gọi \(S\) là tập hợp các số tự nhiên có 4 chữ số khác nhau. Chọn ngẫu nhiên một số từ tập \(S\). Tìm xác suất để số được chọn có các chữ số sắp xếp theo thứ tự tăng dần và không chứa hai chữ số nguyên nào liên tiếp nhau.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:412816
Phương pháp giải

- Gọi số tự nhiên có 4 chữ số khác nhau là \(\overline {abcd} \,\,\left( {a \ne 0,\,\,a,b,c,d \in \mathbb{N},\,\,0 \le a,b,c,d \le 9} \right)\). Tính số phần tử của không gian mẫu.

- Gọi A là biến cố: “Số được chọn có các chữ số sắp xếp theo thứ tự tăng dần và không chứa hai chữ số nguyên nào liên tiếp nhau” \( \Rightarrow 1 \le a < b < c < d \le 9\).

- Từ yêu cầu bài toán, suy ra được điều kiện \(1 \le a < b - 1 < c - 2 < d - 3 \le 6\), chọn cặp các chữ số \(\left( {a;b - 1;c - 2;d - 3} \right)\) thỏa mãn điều kiện trên, từ đó tính được \(n\left( A \right)\).

- Tính xác suất của biến cố A: \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Giải chi tiết

Gọi số tự nhiên có 4 chữ số khác nhau là \(\overline {abcd} \,\,\left( {a \ne 0,\,\,a,b,c,d \in \mathbb{N},\,\,0 \le a,b,c,d \le 9} \right)\).

- Số cách chọn \(a\): 9 cách \(\left( {a \ne 0} \right)\).

- Số cách chọn \(b,\,\,c,\,\,d\): \(A_9^3 = 504\) cách.

\( \Rightarrow \) Số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 9.504 = 4536\).

Gọi A là biến cố: “Số được chọn có các chữ số sắp xếp theo thứ tự tăng dần và không chứa hai chữ số nguyên nào liên tiếp nhau”.

\( \Rightarrow 1 \le a < b < c < d \le 9\).

Vì các số \(a,\,\,b,\,\,c,\,\,d\) không có hai số nào là hai số nguyên liên tiếp nên ta có:

\(\left\{ \begin{array}{l}b > a + 1\\c > b + 1\\d > c + 1\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}a < b - 1\\b < c - 1 \Rightarrow b - 1 < c - 2\\c < d - 1 \Rightarrow c - 2 < d - 3\end{array} \right.\).

Khi đó ta có \(1 \le a < b - 1 < c - 2 < d - 3 \le 6\).

Số cách chọn được 1 bộ số \(\left( {a;b - 1;c - 2;d - 3} \right)\) là \(C_6^4 = 15\) cách. Ứng với mỗi cách chọn 1 bộ số \(\left( {a;b - 1;c - 2;d - 3} \right)\) ta được 1 bộ số \(\left( {a;b;c;d} \right)\) thỏa mãn yêu cầu bài toán \( \Rightarrow n\left( A \right) = 15\).

Vậy xác suất của biến cố A là \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \dfrac{{15}}{{4536}} = \dfrac{5}{{1512}}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com