Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\), \(AB = 3a\), \(AD = DC =
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\), \(AB = 3a\), \(AD = DC = a\). Gọi \(I\) là trung điểm của \(AD\), biết hai mặt phẳng \(\left( {SBI} \right)\) và \(\left( {SCI} \right)\) cùng vuông góc với đáy và mặt phẳng \(\left( {SBC} \right)\) tạo với đáy một góc \({60^0}\). Gọi \(M\) điểm trên \(AB\) sao cho \(AM = 2a\), tính khoảng cách giữa \(MD\) và \(SC\).
Đáp án đúng là: B
Quảng cáo
- Trong \(\left( {ABCD} \right)\) kéo dài \(AD\) cắt \(BC\) tại \(E\). Sử dụng định lí Ta-lét đảo chứng minh \(MD\parallel BE\).
- Khoảng cách giữa hai đường thẳng chéo nhau là khoảng cách từ đường thẳng này đến mặt phẳng song song và chứa đường thẳng kia.
- Đổi về tính khoảng cách từ \(I\) đến \(\left( {SBE} \right)\).
- Trong \(\left( {SBE} \right)\) kẻ \(IH \bot BE\,\,\left( {H \in BE} \right)\), trong \(\left( {SIH} \right)\) kẻ \(IK \bot SH\,\,\left( {K \in SH} \right)\), chứng minh \(IK \bot \left( {SBE} \right)\).
- Xác định góc giữa \(\left( {SBC} \right)\) và \(\left( {ABCD} \right)\) là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.
- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông để tính khoảng cách.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













