Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\) có số đo ba góc là \(A,B,C\) thỏa mãn điều kiện \(\tan \frac{A}{2} + \tan

Câu hỏi số 413089:
Vận dụng cao

Cho tam giác \(ABC\) có số đo ba góc là \(A,B,C\) thỏa mãn điều kiện \(\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} = \sqrt 3 \).

Chứng minh rằng tam giác \(ABC\) là tam giác đều.

Quảng cáo

Câu hỏi:413089
Phương pháp giải

- Chứng minh \(\tan \frac{A}{2}\tan \frac{B}{2} + \tan \frac{B}{2}\tan \frac{C}{2} + \tan \frac{C}{2}\tan \frac{A}{2} = 1\) 

- Chứng minh và sử dụng bất đẳng thức \({\left( {a + b + c} \right)^2} \ge 3\left( {ab + bc + ca} \right)\) 

Giải chi tiết

*) Trước hết ta chứng minh: \(\tan \frac{A}{2}\tan \frac{B}{2} + \tan \frac{B}{2}\tan \frac{C}{2} + \tan \frac{C}{2}\tan \frac{A}{2} = 1\)

Ta có: \(A + B + C = \pi  \Rightarrow \frac{{A + B + C}}{2} = \frac{\pi }{2}\)

\(\begin{array}{l} \Rightarrow \frac{{A + B}}{2} = \frac{\pi }{2} - \frac{C}{2}\\ \Rightarrow \tan \frac{{A + B}}{2} = \tan \left( {\frac{\pi }{2} - \frac{C}{2}} \right)\\ \Leftrightarrow \tan \left( {\frac{A}{2} + \frac{B}{2}} \right) = \cot \frac{C}{2}\\ \Leftrightarrow \frac{{\tan \frac{A}{2} + \tan \frac{B}{2}}}{{1 - \tan \frac{A}{2}\tan \frac{B}{2}}} = \frac{1}{{\tan \frac{C}{2}}}\end{array}\)

\(\begin{array}{l} \Leftrightarrow \left( {\tan \frac{A}{2} + \tan \frac{B}{2}} \right)\tan \frac{C}{2} = 1 - \tan \frac{A}{2}\tan \frac{B}{2}\\ \Leftrightarrow \tan \frac{A}{2}\tan \frac{C}{2} + \tan \frac{B}{2}\tan \frac{C}{2} = 1 - \tan \frac{A}{2}\tan \frac{B}{2}\\ \Leftrightarrow \tan \frac{A}{2}\tan \frac{B}{2} + \tan \frac{B}{2}\tan \frac{C}{2} + \tan \frac{C}{2}\tan \frac{A}{2} = 1\end{array}\)

*) Chứng minh bất đẳng thức \({\left( {a + b + c} \right)^2} \ge 3\left( {ab + bc + ca} \right)\)

Ta có: \({\left( {a + b + c} \right)^2} \ge 3\left( {ab + bc + ca} \right)\)

\(\begin{array}{l} \Leftrightarrow {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\\ \ge 3ab + 3bc + 3ca\\ \Leftrightarrow {a^2} + {b^2} + {c^2} - ab - bc - ca \ge 0\\ \Leftrightarrow 2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ca \ge 0\\ \Leftrightarrow \left( {{a^2} - 2ab + {b^2}} \right) + \left( {{b^2} - 2bc + {c^2}} \right) + \left( {{c^2} - 2ca + {a^2}} \right) \ge 0\\ \Leftrightarrow {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} \ge 0\end{array}\)

(BĐT cuối luôn đúng do \(\left\{ \begin{array}{l}{\left( {a - b} \right)^2} \ge 0\\{\left( {b - c} \right)^2} \ge 0\\{\left( {c - a} \right)^2} \ge 0\end{array} \right.\))

Áp dụng bđt vừa chứng minh với \(a = \tan \frac{A}{2},b = \tan \frac{B}{2},\) \(c = \tan \frac{C}{2}\) ta được:

\({\left( {\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2}} \right)^2}\) \( \ge 3\left( {\tan \frac{A}{2}\tan \frac{B}{2} + \tan \frac{B}{2}\tan \frac{C}{2} + \tan \frac{C}{2}\tan \frac{A}{2}} \right) = 3.1 = 3\)

\(\begin{array}{l} \Rightarrow {\left( {\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2}} \right)^2} \ge 3\\ \Rightarrow \tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \ge \sqrt 3 \end{array}\)

Đẳng thức xảy ra khi \(\tan \frac{A}{2} = \tan \frac{B}{2} = \tan \frac{C}{2}\) hay \(A = B = C = \frac{\pi }{3}\).

Vậy tam giác ABC đều (đpcm).

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com