Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Thực hiện phép chia:

Thực hiện phép chia:

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

\(\left( {{x^3} + 6{x^2} + 12x + 8} \right):\left( {x + 2} \right)\)

Đáp án đúng là: B

Câu hỏi:413123
Phương pháp giải

Sử dụng hằng đẳng thức \({\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\) để phép chia đơn thức cho đơn thức với biến \(x + 2\).

Giải chi tiết

\(\left( {{x^3} + 6{x^2} + 12x + 8} \right):\left( {x + 2} \right)\)

\(\begin{array}{l}\left( {{x^3} + 6{x^2} + 12x + 8} \right):\left( {x + 2} \right)\\ = \left( {{x^3} + 3.2{x^2} + {{3.2}^2}x + {2^3}} \right):\left( {x + 2} \right)\\ = {\left( {x + 2} \right)^3}:\left( {x + 2} \right)\\ = {\left( {x + 2} \right)^2}\end{array}\)

Chọn B.          

Đáp án cần chọn là: B

Câu hỏi số 2:
Vận dụng

\({\left( {x - y} \right)^4}:{\left( {y - x} \right)^3}\)

Đáp án đúng là: A

Câu hỏi:413124
Phương pháp giải

Sử dụng \({\left( {A - B} \right)^2} = {\left( {B - A} \right)^2}\) để chuyển phép chia về ẩn \(y - x\).

Giải chi tiết

\({\left( {x - y} \right)^4}:{\left( {y - x} \right)^3}\)

\(\begin{array}{l}{\left( {x - y} \right)^4}:{\left( {y - x} \right)^3}\\ = {\left( {y - x} \right)^4}:{\left( {y - x} \right)^3}\\ = y - x\end{array}\)

Đáp án cần chọn là: A

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com