Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho số phức z thỏa mãn điều kiện \(\left| z \right| = 1\). Gọi M và m lần lượt là giá trị

Câu hỏi số 414124:
Vận dụng cao

Cho số phức z thỏa mãn điều kiện \(\left| z \right| = 1\). Gọi Mm lần lượt là giá trị lớn  nhất và giá trị nhỏ nhất của biểu thức \(P = \left| {{z^2} + 3z + \overline z } \right| - \left| {z + \overline z } \right|\). Tính \(M + m.\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:414124
Phương pháp giải

Đặt \(z = a + bi\) rồi tính môđun của P.

Rút b theo a rồi tìm giá trị lớn nhất và nhỏ nhất.

Giải chi tiết

Đặt \(z = a + bi\) \(\left( {a,\,\,b \in \mathbb{R}} \right)\).

Theo bài ra ta có: \(\left| z \right| = 1\) \( \Rightarrow {a^2} + {b^2} = 1\)\( \Rightarrow  - 1 \le a \le 1\).

Khi đó ta có:

\(\begin{array}{l}P = \left| {{z^2} + 3z + \overline z } \right| - \left| {z + \overline z } \right|\\P = \left| {{{\left( {a + bi} \right)}^2} + 3\left( {a + bi} \right) + a - bi} \right| - \left| {a + bi + a - bi} \right|\\P = \left| {{a^2} - {b^2} + 4a + 2abi + 2bi} \right| - \left| {2a} \right|\\P = \sqrt {{{\left( {{a^2} - {b^2} + 4a} \right)}^2} + {{\left( {2ab + 2b} \right)}^2}}  - \left| {2a} \right|\\P = \sqrt {{{\left( {{a^2} - \left( {1 - {a^2}} \right) + 4a} \right)}^2} + {{\left[ {2b\left( {a + 1} \right)} \right]}^2}}  - \left| {2a} \right|\\P = \sqrt {{{\left( {2{a^2} + 4a - 1} \right)}^2} + 4\left( {1 - {a^2}} \right){{\left( {a + 1} \right)}^2}}  - \left| {2a} \right|\\P = \sqrt {4{a^4} + 16{a^2} + 1 + 16{a^3} - 4{a^2} - 8a + 4\left( { - {a^4} - 2{a^3} + 2a + 1} \right)}  - \sqrt {4{a^2}} \\P = \sqrt {8{a^3} + 12{a^2} + 5}  - \sqrt {4{a^2}} \end{array}\)

Sử dụng MODE 7 ta tìm được \(M = \max P = 3,\,\,m = \min P = 1\).

Vậy\(M + m = 3 + 1 = 4\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com