Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) với \(a \ne 0\) có đồ thị như hình vẽ. Tập hợp tất
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) với \(a \ne 0\) có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số \(m\) để phương trình \(f\left( {2 - x} \right) = m\) có đúng ba nghiệm phân biệt là:

Đáp án đúng là: D
Quảng cáo
- Đặt \(2 - x = t\), phương trình trở thành \(f\left( t \right) = m\) (*).
- Để phương trình ban đầu có 3 nghiệm phân biệt thì phương trình (*) phải có 3 nghiệm phân biệt.
- Sử dụng tương giao đồ thị hàm số.
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












